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The aspect ratio of short coin-like cylinders is defined as L}D, where L is the length
and D is the diameter of the cylinder. Force and pressure measurements are extended
down to L}D¯ 0.025. The force measurements indicate an unexpected increase in drag
coefficient with decreasing aspect ratio. The basic equation used to define the drag
coefficient is inapplicable for very low aspect ratio and the projected area should be
replaced by the side area. Surface flow visualization tests in a wind tunnel reveal the
variation in both shape and size of separation bubbles, which form on the flat sides of
the model. A crescent-shaped area is observed between the primary and secondary
separation, followed by an unsteady re-attachment region. A strong hysteresis effect is
observed in the development of the separation bubbles. The separation bubbles can be
suppressed by rounding the sharp edges of the model, with considerable reduction in
the drag coefficient. Finally, a flow topology is suggested consisting of two horseshoe
vortices attached onto the flat sides and detached in a streamwise direction, thus
forming two counter-rotating vortex pairs.

1. Introduction

Wieselsberger (1922) was among the first to report drag measurements on a circular
cylinder with two free ends having the aspect ratio L}D¯ 5, where L is the length and
D the diameter of the cylinder. He covered an enormous range of Reynolds numbers
from 400 to 800¬10$. The drag coefficient, C

D
, curve varied with the Reynolds number

in a similar manner to that for the nominally two-dimensional cylinder, L}D¯¢, but
it was displaced towards lower C

D
values. For example, the plateau for the subcritical

regime occurred for C
D

¯ 0.78 instead of C
D

¯ 1.2 for L}D¯¢. The drastic fall in C
D

values in the critical regime Re" 4¬10& took place at the same Reynolds number and
towards the same value of C

D
¯ 0.3 as for L}D¯¢. Subsequently, Wieselsberger (see

Muttray 1932) examined the effects of aspect ratio on the drag coefficient for Re¯
8.8¬10%. Figure 1 shows a compilation of drag coefficient values in terms of both L}D
and D}L down to L}D¯ 1.

Zdravkovich et al. (1989) repeated Wieselsberger’s tests and also examined the effect
of hemispherical ends on the drag coefficient. Figure 1 shows a considerable reduction
in drag coefficient for the latter, which is an indication that flat sides contribute to the
overall drag. Note that as the aspect ratio decreases, the cylindrical part of the cylinder
shrinks and for L}D¯ 1 the ‘cylinder’ with two hemispherical ends becomes a sphere.
However, when the cylinder has two flat sides it is possible to reduce the aspect ratio
down to L}DU 0, but the drag cannot tend to zero because of skin friction on both
sides. The aspect ratios in the range 0!L}D! 1 will be examined in some detail in
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F 1. Drag coefficient compilation in terms of aspect ratio (Zdravkovich et al. 1989).

the present paper. The effect of free ends becomes dominant in that range and the
Reynolds number still determines the boundary layer characteristics and the skin
friction drag.

The practical applications of coin-like cylinders are numerous, such as aircraft, car
and bicycle wheels, cylindrical objects carried by a tornado as deadly projectiles,
submerged remotely operated vehicles (ROV), frisbee (with added rotation) discs like
AWAC radar, etc. In most of these applications, the main interest is the drag force and
its reduction. There is also a fundamental interest in such highly complex three-
dimensional flows. They exhibit three kinds of separation: (i) salient primary
separation from sharp edges ; (ii) secondary separation of the reversed flow along the
flat sides ; (iii) separation from the circumference of the cylinder due to the adverse
pressure gradient. There may be a re-attachment of the flow onto the flat sides and
formation of separation bubbles in addition to the main unsteady separation region
– the near wake. The aim of the tests described in the present study was to gain some
insight into the topology and interaction of these flow structures.

2. Experimental arrangement

2.1. Wind tunnels

Tests have been carried out in two wind tunnels. The first was of a closed-circuit type
having a test section 0.91 m high, 1.24 m wide, and 1.80 m long. The speed could be
varied up to 40 m s−" and the local free-stream turbulence was around 1%. Above the
test section there was a six-component strain-gauge aerodynamic balance which was
used to measure drag force only.

The second wind tunnel was of an open-circuit type having a test section of
0.46 m¬0.46 m in cross-section and 1.38 m long. The speed could be varied up to
46 m s−" and free-stream turbulence intensity was approximately 1%. This wind tunnel
was used for all pressure distribution measurements and surface flow visualization.
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F 2. Model (a) suspended on balance, (b) attached to floor of test section, (c) front view.

2.2. Models

Different models were made for the force and pressure measurements. Four cylinders
30 cm diameter were used for the former, having aspect ratios, L}D¯ 0.07, 0.13, 0.25
and 0.5. By combining these models it was possible to have L}D¯ 0.37, 0.63, 0.75 and
0.89. The flat free ends on all models were made with sharp edges. Two additional
models of 60 cm diameter were made to L}D¯ 0.025 and 0.050, having either sharp
or rounded edges on both sides. The attachment of the models to the aerodynamic
balance above the test section is illustrated in figures 2(a) and 2(c). The measured drag
force consisted of two components produced by the model and its support. The
support drag force was measured by attaching the model to the floor of the test section,
as shown in figure 2(b). The maximum blockage was 4.3%.

The basic model for pressure measurements and surface flow visualization was
8.9 cm in diameter, 0.9 cm wide, giving L}D¯ 0.11, as shown in figure 3. It was
provided with eight pressure tappings around the circumference at 0°, 30°, 60°, 75°,
90°, 105°, 120° and 135°. There was also six pressure tappings on one flat side at a
2.4 cm radius at 0°, 37.5°, 67.5°, 112.5° and 180°, plus one at 1.6 cm radius 0°. Two
central pressure tappings on both flat sides (R¯ 0) were provided for the alignment of
the model to a zero yaw angle. The aspect ratio was varied by adding cylindrical inserts
8.9 cm in diameter and having L}D¯ 0.06, 0.13, 0.25, 0.31 and 0.40. Maximum
blockage ratio for L}D¯ 0.89 with supports was 3.5%. The inserts could be attached
either symmetrically when the pressure distribution was measured along the equatorial
axis or asymmetrically when the pressure distribution was measured at Z}D¯ 0.055
from the flat side.

The model was attached to a sting mount in a vertical position, as seen in figure 3.
The L-shaped sting was fastened to an adjustable turntable in the test section. The sting
mount, attached to the rear of the model, covered the arc from 165° to 195° of the
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F 3. Model mounted on sting (D¯ 8.9 cm, flow from right to left).

model. It had an oval shape 2.0 cm¬0.6 cm, slightly narrower than the 0.9 cm width
of the basic model (L}D¯ 0.11). The rest of the sting was made of a hollow steel tube
1.5 cm in diameter which accommodated sixteen plastic tubes attached to the pressure
tappings around and on the sides of the model. It was originally envisaged that,
although the sting was completely shielded by the model, it might affect the separation
from the circumference and the base pressure in the near wake. This was checked and
found not to be the case.

2.3. Surface flow �isualization

An extensive surface flow visualization was carried out on all models. A white talcum
powder–paraffin mix was applied with a brush to acetate sheets glued onto the model
surface. During the run, the paraffin evaporated and a distinct surface pattern revealed
a time-average secondary separation and re-attachment region on the flat sides and
separation lines on the circumference of the model.

3. Experimental results

3.1. Drag measurements

The original aim of the drag measurements was to confirm an expected further decrease
in drag coefficient for aspect ratios below 1. The decrease in drag coefficient was
expected because the ‘bluffness ’ of the coin-like cylinder decreased and eventually,
when L}DU 0, only the friction drag was present along the flat sides of an extremely
thin disc.

Several test runs were carried out using various models and the drag coefficient, in
terms of L}D, is plotted in figure 4. The unexpected increase in drag coefficient with
the decreasing aspect ratio is evident.

The scatter of experimental points obtained in the same run did not exceed ³4%.
However, there was always a systematic departure of experimental points obtained in
different runs up to ³8%, thought to be due to a slight misalignment of the models.
The same effect was also noted and quantified for bicycle wheels, Zdravkovich (1992).
The proportion of the support drag relative to the total drag was less than 10% and
was dependent on the aspect ratio.

Another point worth noting was that the tests were carried out in the critical regime,
2¬10&!Re! 6¬10&, where a drastic drop in C

D
was found at Re¯ 4¬10& for
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F 4. Measured drag coefficient in terms of aspect ratio: *, early tests ; D, second tests ;
E, repeated tests ; x, 60 cm disc; best fit curve C

D
¯ 0.24}L}D0.633.

L}D Rounded edge Sharp edge C
D

reduction

0.05 0.73 1.10 33.6%
0.03 1.18 1.51 17.7%

T 1. Drag coefficient for sharp and round edges

L}D¯ 5 by Wieselsberger (1922). A similar Reynolds number effect has not been
found for the coin-like cylinders up to Re¯ 6¬10&. The 60 cm diameter models were
provided with rounded edges (like the bicycle wheel) and the drag was measured again.
The drag coefficient is given in table 1.

These simple tests demonstrated that separation bubbles that formed around sharp
edges did contribute to the overall drag. The re-attachment of separated shear layers
might have an additional effect because it caused a considerable adverse pressure
recovery along the surface. This is to be discussed in more detail in the following
subsections.

The increase in drag coefficient for coin-like cylinders may be circumvented by
replacing the projected area, LD, by the side area, D#π}4, as the reference area:

C
DS

¯C
D

L

D

4

π
, (1)

where C
DS

is the new drag coefficient and C
D

is the old conventional drag coefficient.
Figure 5 shows the variation of C

DS
in terms of the aspect ratio of the model : it appears

that the increase is only apparent due to the inappropriate formulation of the reference
area.

3.2. Pressure distribution around a circumference

The tests were carried out in the second wind tunnel using 8.9 cm diameter models
mounted on the sting, figure 3. It had been established that the pressure distribution
did not depend on Reynolds number and tests were restricted to Re¯ 2.4¬10&. The
aspect ratio was varied by adding cylindrical sections either symmetrically on both
sides of the basic model or asymmetrically on one side only. These two arrangements
allowed two pressure distributions to be measured in separate runs along the middle
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F 5. Drag coefficient based on side area in terms of aspect ratio (all tests).
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F 6. Pressure coefficient distribution around circumference at mid-span for D, L}D¯ 0.11;
x, 0.23; *, 0.39, V, 0.63.

and near the flat side of the model, respectively. Note that for the basic model, L}D¯
0.11, only the pressure distribution at the middle plane could be measured.

Figure 6 shows a typical mid-span pressure distribution for various aspect ratios.
The highest ®C

pmin
is found for L}D¯ 0.11 and the lowest ®C

pmin
for L}D¯ 0.63.

The variation in pressure distribution for the same L}D at the side and the mid-span
is shown in figure 7, where the distribution for L}D¯ 0.11 is added for comparison.
There are three unexpected features. (i) The positive part of the windward pressure
distribution curve is spread towards higher circumferential angles in comparison with
the nominally two-dimensional cylinder. For example, C

p
¯ 0 is at θ¯ 55° for L}D¯

0.11 but θ¯ 35° for L}D U¢. (ii) The base pressure coefficient is only ®0.36
compared with ®1.4 for the nominally two-dimensional cylinder. The strong three-
dimensional flow towards the wake of the model considerably reduces the negative
base pressure. (iii) A pressure recovery is seen for θ" 100°. It may have been caused
by the sting of θ" 165°, but this is not the case and will be discussed in the next section.
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F 7. Pressure distribution versus circumferential angle : for (a) L}D¯ 0.23, (b) L}D¯ 0.39,
(c) L}D¯ 0.75. ^, mid-span; x, side. For comparison: D, L}D¯ 11.

3.3. Surface flow �isualization

Flow around coin-like cylinders is dominated by the salient separation from the sharp
edges along the circumference on both sides. The separated shear layers may re-attach
onto the flat sides and the region between the primary salient separation from the sharp
edge and re-attachment forms the separation bubble, see the review by Kiya & Sasaki
(1983). The reversed flow along the surface underneath the separation bubble
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F 8. (a) Surface pattern on flat side, (b) developed pattern on cylindrical section (Sketch),
for L}D¯ 0.05 at Re¯ 5.9¬60 cm model).

eventually detaches from the surface as the secondary separation. Surface flow
visualization shows distinctly an almost steady secondary separation line and, less
distinctly, the unsteady re-attachment region.

Figure 8 shows the surface pattern for L}D¯ 0.05 at Re¯ 5.4¬10& on the large
60 cm diameter model in wind tunnel 1. The flat side of the model is covered with six
A4 acetate sheets, but only the pattern on the central windward sheet is reproduced in
figure 8(a). There are three regions displayed in the surface pattern. (i) The stagnant
area between the primary and secondary separations forms a crescent shape. (ii) The
re-attachment region appears straight and vertical in figures 8(a) and 9(b). (iii) The
flow remains attached to the surface beyond the re-attachment region. This area
extends up to the trailing edge of the flat side (not covered in figure 8a).

Figure 8(b) shows the developed surface pattern around the perimeter of the
cylindrical section for the L}D¯ 0.05. There are three features : (i) The three-
dimensional flow is characterized by the lateral outflow components from the axis of
symmetry towards the two sides. (ii) The separation line degenerates to a separation
‘ islet ’. Two such ‘ islets ’ are seen in figure 8(b) at around θ¯ 90°. Note that this model
is not supported by the sting and this flow feature cannot be attributed to the sting
interference. (iii) The reason for the disappearance of separation lines can be found in
the surface pattern along the leeward side. The three-dimensional flow is characterized
by surface lines directed from the sides toward the model axis of symmetry. This inflow
gradually stops at around θ¯ 160° and is produced by the base pressure difference
between the middle and side planes.

Figure 9(a) shows surface patterns on the flat side of the L}D¯ 0.11 model at Re¯
2.14¬10&. The size of the model (30 cm diameter) allows full coverage with a single A4
acetate sheet. The secondary separation forms a crescent-like area, as in figure 8(a).
The re-attachment may be inferred from the spanwise surface pattern covering a
vertical strip and being a time-average imprint of the unsteady surface flow. The
positions of the secondary separation and re-attachment along the equatorial axis of
the flat side are at X}D¯ 0.11 and 0.31, respectively. Figure 9(b) shows a considerable
downstream displacement of the re-attachment for L}D¯ 0.39 in comparison with
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F 9. Surface pattern on the flat side at Re¯ 2.14¬10& (8.9 cm model) for
(a) L}D¯ 0.11, (b) 0.39, (c) 0.75.
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F 10. Developed surface pattern on the cylindrical sections (8.9 cm diameter),
(a) L}D¯ 0.39, (b) L}D¯ 0.75.
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figure 9(a). Finally, figure 9(c) shows the surface pattern for L}D¯ 0.75 and it seems
that the separated shear layer does not re-attach onto the flat side.

Figures 10(a) and 10(b) show the surface pattern along the perimeter of the
cylindrical sections of two models, L}D¯ 0.39 and 0.75, respectively. (Note that both
acetate strips extended only up to ³140°). The separation ‘ islets ’ are seen in figure
10(a) for L}D¯ 0.39 at θ³96°. However, they are replaced by separation lines at
θ¯³86° in figure 10(b).

Initially, the separation ‘ islets ’ were assumed to be due to sting interference. The
surface visualization was performed on L}D¯ 0.39 model, mounted on the sting
support and on the central transverse rod. Identical separation ‘ islets ’ were found in
the same location in both cases. This confirmed that the separation ‘ islets ’ were an
intrinsic feature of the low-aspect-ratio cylinders and they were caused by the
disruption of separation lines by the flow along the edges.

3.4. Side pressure distribution

The qualitative features of the mean surface flow revealed by the flow visualization
were confirmed by the local static pressure measured along one flat side of the models.
The area under the separation bubble was associated with low pressure, the re-
attachment region caused the adverse pressure recovery and the re-attached flow was
characterized by the closeness to the free-stream pressure, i.e. C

p
U 0, see the review by

Roshko (1993).
Figure 11 shows the pressure coefficient distribution measured on the flat side of the

models for 0.11!L}D! 0.89 at Re¯ 2.14¬10&. The pressure tappings were arranged
along a semicircle of 2.4 cm radius at θ¯ 0°, 37.5°, 67°, 112.5° and 180°. (Note that
only the first and last tapping lie on the equatorial axis.) The lowest-aspect-ratio model,
L}D¯ 0.11, shows the earliest pressure recovery due to the shortest separation bubble.
There is a considerable displacement of the pressure recovery for L}D¯ 0.23 and it
proceeds at a slower rate as the aspect ratio increases. For example, the pressure
distributions for L}D¯ 0.74 and 0.89 are barely different. The free-stream pressure
(C

p
¯ 0) is not reached and this may indicate that the re-attachment occurs beyond

X}D¯ 0.76, the last available pressure tapping.
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F 12. Relative positions of re-attachment and secondary separation in terms of aspect ratio:
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F 13. Tentative sketch of flow topology: IS – primary separation; 2S – secondary
separation; SI – separation islet ; RA…, re-attachment; - - -, separation bubble ; –[–, streamwise
vortex filaments.

3.5. Separation bubbles

The appearance of the separation bubbles on the flat sides of coin-like cylinders is
caused by the salient separation from the sharp edges and subsequent re-attachment.
There is a strong variation in size of the separation bubbles with the aspect ratio.
Figure 12 shows the estimated relative position of the re-attachment region (squares)
and secondary separation (circles) along the equatorial axis of the model. Note that the
length of the separation bubble is designated by the re-attachment curve (top). Despite
the semicircular shape of the primary separation line, the re-attachment line appears
as an almost straight line. The initial three-dimensional separation produces a two-
dimensional re-attachment.

A tentative attempt to specify flow topology is shown in figure 13. Beyond the
perimeter of the cylinder, two pairs of streamwise eddies are carried downstream. The
geometry of these horseshoe eddies was visualized beyond a stationary frisbee in a wind
tunnel by Nakamura & Fukamachi (1991). The position of the separation islet on the
cylindrical segment coincides with the eddy pairs.

4. Conclusions

The unexpected increase in drag coefficient for low-aspect-ratio cylinders has
prompted the present research. The main findings are as follows:
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There is a systematic increase in the conventional drag coefficient (expressed through
the projected area L}D) up to 1.5 for L}D¯ 0.06. The apparent increase in the
conventional drag coefficient disappears when a new drag coefficient, scaled by the side
area as the reference area, is used.

The elimination of the separation bubbles by rounding the edges (R¯ "

#
L) produces

a considerable reduction in the measured drag coefficient.
The surface flow visualization on two flat sides reveals crescent-shaped areas

between primary separation from the sharp edges and secondary separation of the
reversed flow underneath the separation bubbles. The re-attachment region appears to
be straight and perpendicular to the free stream. The surface flow visualization around
the cylindrical section reveals the gradual disappearance of separation lines in the
range 0.39!L}D! 0.75 and the appearance of separation ‘ islets ’ for L}D! 0.39.
The change in separation is caused by the three-dimensional flow.

A tentative topology of the flow around coin-like cylinders is proposed; it may
consist of two horseshoe-shaped vortices attached onto the two flat sides. After their
detachment at around ³90°, the free vortices are coupled into two counter-rotating
pairs on the leeside.

The first author would like to give credit for the experimental work carried out as
final-year projects by the three co-authors being, at that time, undergraduate students
at the University of Salford. We would like to thank Dr E. M. Laws who kindly read
and improved the manuscript, and all the referees who made valuable suggestions.
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